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Pareto eigenvalue complementarity problems

Samir Adly - Université de Limoges

A scalar λ > 0 is called a Pareto eigenvalue of a matrix A ∈ R
n×n if there is

x ∈ R
n \ {0} such that

0 ≤ x ⊥ (Ax− λx) ≥ 0.

Pareto eigenvalues appear for instance in the stability analysis of finite dimen-
sional elastic structures with frictional contacts. An open problem is to deter-
mine the maximum number of such eigenvalues. More precisely, denoting σP (A)
the set of Pareto eigenvalues of the matrix A, we want to determine

πn = max
A∈Rn×n

card(σP (A)).

The best currently known bounds are

3(2n−1 − 1) ≤ πn ≤ n2n−1 − (n− 1).

In particular π1 = 1, π2 = 3 and π3 = 9 or 10. Note also that π20 ≥ 1 572 861.
The following matrices of order 3,4,5 have exactly 9, 23 and 57 Pareto eigenval-
ues respectively

A3 =





5 −8 2
−4 9 1
−6 −1 13



 A4 =









132 −106 18 81
−92 74 24 101
−2 −44 195 7
−21 −38 0 230









A5 =













788 −780 −256 156 191
−548 862 −190 112 143
−456 −548 1308 110 119
−292 −374 −14 1402 28
−304 −402 −66 38 1522













Q1. Find a matrix A ∈ R
3×3 with 10 Pareto eigenvalues.

Q2. How to improve the lower bound?

Q3. Find the asymptotic growth order of πn as n goes to infinity.
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On the alternating projection method
Jean-Bernard Baillon

Problem 1. The solution of du
dt

= Mu is u(t) = etMu(0). For M = A+ B in general et(A+B) 6= etAetB

while the Trotter-Lie formula gives

et(A+B) = lim
n
(e

t

n
Ae

t

n
B)n.

When A = ∆ and B = V one can solve du
dt

+∆u = 0 and du
dt

+V (u) = 0, and then consider an alternating
solution method. Note that ∆u+ V (u) might not be well defined even if V (u) = vu . . . open problem.

Problem 2. On Hilbert space, consider a finite family of orthogonal projectors Pj onto Fj . We know that
(Pm · · ·P1)

nx converges strongly to the projection of x onto ∩jFj . Can we accelerate this convergence?
Amemiya & Ando (1964) looked at sequences Pϕ(n) · · ·Pϕ(1)x with ϕ(n) ∈ {1, . . . ,m}, and gave conditions
for weak convergence. Since then, many have tried to establish strong convergence: Bruck, Dye, Reich,
jbb, Lin, PLL,. . . This would follow from Bruck’s Conjecture: if Cm is the Halperin constant, then

‖Pϕ(n) · · ·Pϕ(1)x− x‖2 ≤ Cm(‖x‖2 − ‖Pϕ(n) · · ·Pϕ(1)x‖2).

For m = 2 the best constant is 2. For m = 3 we do not know. Numerical tests using semi-definite
programming have been used to estimate the best constant. Paszkiewicz (ArXiv, 2012) gave a quasi-
definitive answer for m = 5, using simple tools. The cases m = 3, 4 are open. Also open is the case of
self-adjoint operators and the characterization of strong convergence.

Problem 3. Alternate projections onto two convex sets C1 and C2 generate a sequence that converges
to a pair attaining the minimum distance d(C1, C2). For 3 or more sets, cyclic projections still converge
but no variational characterization exists for the limit cycle (jbb-Combettes-Cominetti, JFA 2012).

Which is the variational formulation for A+B? In particular for −∆u+fu? In dimension 1, −u′′+fu
with f ≥ 0, f ∈ L1

loc but f 6∈ L2
loc, the domain of the sum operator is 0. How it can be enlarged? For

ϕ, ψ l.s.c. convex functions
∂ϕ⊕ ∂ψ = ∂(ϕ+ ψ).

What happens when f 6≥ 0? What about if A,B are no longer sub-differentials and/or nonlinear? What
can be said for their difference A−B?

Problem 4. Let Rn denote the inverse of the lower triangular matrix Mn =
(

⌊ i
j
⌋
)

1≤i,j≤n
, e.g.

M3 =





1 0 0
2 1 0
3 1 1





Can you prove that |
∑

Rij | ≤ const
√
n ? What about |

∑

Rij | ≤ kǫ n
1

2
+ǫ ?

Remark: If ⌊ i
j
⌋ is replaced by ( i

j
)+ where x+ = 0 if x < 1 and x+ = x otherwise, we have |

∑

Rij | ∼ lnn.

Prize: US$1.000.000. And maybe a Fields Medal?
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PARTIAL INVERSE AND DUALITY APPLIED TO MONOTONE

INCLUSIONS

Luis M. Briceño Arias
1

1Universidad Técnica Federico Santa Maŕıa

In 1983 Spingarn introduced the partial inverse of a maximally monotone operator A : H → 2H

with respect to a closed vectorial subspace V of the real Hilbert space H by

{

AV : H → 2H

u ∈ AV x ⇔ PV u+ PV ⊥x ∈ A(PV x+ PV ⊥u).
(1)

Note that AH = A and A{0} = A−1. Spingarn talked about some relations between partial inverse
and duality but not in a precise way. In classical monotone operator theory, the dual of the inclusion

find x ∈ H such that 0 ∈ Ax+Bx, (2)

where A : H → 2H and B : H → 2H are maximally monotone, is

find u ∈ H such that 0 ∈ A−1u−B−1(−u). (3)

It is not difficult to prove that another equivalent formulation using partial inverse with respect
to V gives raise to the following inclusions in duality

{

find v ∈ H such that 0 ∈ AV v +RV ◦BV (RV v)

find y ∈ H such that 0 ∈ BV ⊥y −RV ◦ AV ⊥(−RV y),
(4)

where RV = 2PV − Id is the reflection operator with respect to V and y and v are related to x

and u via
{

v = PV x+ PV ⊥u

y = PV u+ PV ⊥x.
(5)

Note that if V = {0} we obtain (2) and (3). Currently I am interested in the following questions.

Problem 1 It is well known that, under qualification conditions, when A = ∂f and B = ∂g for
some convex lsc proper functions f : H → ]−∞,+∞] and g : H → ]−∞,+∞], (2) and (3) reduce



to






minimize
x∈H

f(x) + g(x)

minimize
u∈H

f∗(u) + g∗(−u).
(6)

What are the primal dual optimization problems associated to (4) when A = ∂f and B = ∂g ?
What are the duality objects that appear in this optimization setting ?

Problem 2 In which instances to solve (4) could be better than solving (2) and (3) ?

Problem 3 Suppose that H = U ⊕ V ⊕W and consider the inclusion

find x ∈ H such that 0 ∈ Ax+Bx+ Cx, (7)

where A : H → 2H, B : H → 2H, and C : H → 2H are maximally monotone. Is there a way to
write an equivalent formulation by using AU , BV , and CW separately ? What kind of algorithms
for solving such system (if exist) will appear ?

References

J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., 10 (1983) 247–265.



Can One Genuinely Split m > 2 Monotone Operators?

P. L. Combettes

Laboratoire Jacques-Louis Lions, Faculté de Mathématiques

Université Pierre et Marie Curie – Paris 6, 75005 Paris, France

Playa Blanca – 14 Octubre 2013

Throughout H is a real Hilbert space and zerC =
{

x ∈ H | 0 ∈ Cx
}

is the set of zeros of a set-valued

operator acting on H. Many problems in nonlinear hilbertian analysis can be reduced to

find x ∈ zerC, where C : H → 2H is maximally monotone.

This inclusion can be solved by the proximal point algorithm (the resolvent of C is JC = (Id+C)−1)

xn+1 = JγnCxn, (1)

where (γn)n∈N lies in ]0,+∞[ and
∑

n∈N γ2n = +∞ [3]. Unfortunately, in most situations, (1) is

not implementable because the resolvents of C are too hard to compute. In splitting methods, we

decompose C in terms of operators which are simpler (i.e., they can be used explicitly or have easily

computable resolvents), and we devise an algorithm which employs these operators individually.

Consider the basic inclusion with two maximally operators 0 ∈ Ax + Bx. There exist only 3 basic

splitting methods to solve this inclusion [2]:

• Douglas-Rachford algorithm: γ ∈ ]0,+∞[.

– zer(A+B) = JγB

(

Fix
(

1

2

(

(2JγA − Id) ◦ (2JγB − Id) + Id
)

))

.

– Iterate
⌊

xn = JγByn (backward step)

yn+1 = JγA
(

2xn − yn
)

+ yn − xn (backward step)

Then yn⇀ y, z = JγBy ∈ zer(A+B) [6], and xn ⇀ z ∈ zer(A+B) [2, 8].

• Forward-Backward algorithm: γ ∈ ]0,+∞[.

– B : H → H is β-cocoercive: 〈x− y | Bx−By〉 > β‖Bx−By‖2; γ ∈ ]0, 2β[.

– zer(A+B) = Fix
(

JγA
(

Id− γB
)

)

.

– Iterate
⌊

yn = xn − γBxn (forward step)

xn+1 = JγAyn (backward step)

Then xn⇀ z ∈ zer(A+B) [7].

• Forward-Backward-Forward algorithm: γ ∈ ]0,+∞[.

– zer(A+B) = Fix
(

JγA
(

Id− γB
)

)

.

– B : H → H is monotone and 1/β-Lipschitzian; 0 < γn < β.
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– Iterate












yn = xn − γBxn (forward step)

pn = JγA yn (backward step)

qn = pn − γBpn (forward step)

xn+1 = xn − yn + qn

Then xn⇀ z ∈ zer(A+B) [9].

The open question:

• Existing splitting methods are instances of the 3 basic splitting schemes: despite their appar-

ent complexity and disparity, can be reduced, through a variety of techniques (by duality, by

defining suitable product spaces, with suitable renorming etc.) to one of them [4, 5].

• In some very special cases, it is possible to devise methods which cannot be reduced to a

2-operator scheme, for instance if zer(A) ∩ zer(B) ∩ zer(C) 6= Ø, iterate

xn+1 = (JA ◦ JB ◦ JC)xn ⇀ z ∈ zer(A+B + C).

• Open question: Can we devise a genuine (not reducible to a 2-operator scheme through some

reformulation or transformation) splitting scheme for m > 2?

• Some reasons why the answer may be negative:

– ∈ is a binary relation.

– 2 6= 3: it many instances (and in several open problems presented in this conference) the

behavior for m > 2 is quite different from the behavior for m = 2; see, e.g., [1].

In this case how to prove that no genuine method exists to split m > 2 operators?
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Entropic convexity of expected utilities

Roberto Cominetti∗

Consider the map f : [0, 1]n → R defined by

f(x) , E [Φ(X1 + · · ·+Xn)]

where Φ : N → R is a (discrete) convex function and the Xi’s are indepen-
dent Bernoulli random variables with P(Xi = 1) = xi. Note that f(x) is a
polynomial of degree n, affine with respect to each variable xi separately.
Consider the increasing sequence cu = Φ(u)−Φ(u−1) and let

δ = max
u=2,...,n−1

[cu+1 − cu] = max
u=2,...,n−1

[Φ(u + 1)− 2Φ(u) + Φ(u− 1)].

Problem 1: Find necessary/sufficient conditions on Φ for f to be convex.

Problem 2: Prove or disprove: the entropically perturbed map

f̃(x) , f(x) +
∑n

i=1
xi ln xi + (1−xi) ln(1−xi)

is convex as long as δ ≤ 2.

Problem 3: Study the bifurcation of critical points of f̃ as a function of δ.

Why? The critical points of f̃ characterize the equilibria of the repeated
game dynamics studied in “A payoff-based learning procedure and its applica-

tion to traffic games”, Games & Economic Behavior 70 (2010). The following
facts are known:

a) If Φ(u) = a+ bu then f(x) = a + b
∑n

i=1
xi is linear, hence convex.

b) If Φ(u) = a + bu+ cu2 then f̃ is convex for δ ≤ 2 (cf. Prop. 13).

c) In general f̃ is known to be convex if δ ≤ 1 (cf. Prop. 12).

d) f̃ has a unique critical point if δ < 2 (cf. Thm. 10).

∗Departamento de Ingenieŕıa Industrial, Universidad de Chile 〈rccc@dii.uchile.cl〉.
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Stealing strategies

Dick Lipton asks a question about repeated games that could be interesting to discuss during the
workshop. It is mentioned in the entry Stealing Strategies of his blog Gödel’s Lost Letter and
P=NP.

In game theory an important problem is the existence of a winning strategy, say in repeated
two player games. These strategies are functions of game configurations to actions. Wether these
functions are computable efficiently has not been adressed very often I think. It is however a
practical requirement.

So consider as an example the game Chomp. Two player game, who play in turns. The game
starts with a chocolate bar in form of a rectangle. Later during the game the chocolate is reduced
to some Young tableau. This is just a subset of the grid N2, with the convexity property, that if
cell (a, b) belongs to the tableau, then any cell (a′, b′) with 1 ≤ a′ ≤ a and 1 ≤ b′ ≤ b also belongs
to the tableau. Each turn one of the players selects some cell (a, b) from the tableau, and removes
all cells (a′, b′) with a′ ≥ a and b′ ≥ b. A player looses if it is his turn and the tableau consists of a
single cell.

In this context a strategy is a function mapping a tableau to a cell from this tableau.
Say we have two players called white and black, and white starts. David Gale showed that

there is a strategy for the white player such that she can win, no matter how black plays, except if
white is to start on the single cell tableau of course. The argument is based on a technique called
strategy stealing. Here is the proof. Suppose that there is a strategy for black, such that no matter
what white plays, black can always win. So if the white player just removes to top right cell of the
initial rectangle, then the black will have some response (a, b) to the resulting configuration. But
white could play this same move (a, b) is his first move, and therefore take the role of black and
win.

This shows that there is a winning strategy, without explicitly describing one. But there is a
way for the white player to learn this strategy. Suppose the players play sequentially an infinite
number of games. Then there is a possibility for white to win always but a finite number of times.
The strategies are discrete objects which can be numbered sequentially s1, s2, . . .. So all white has
to do, is to stick to some strategy si starting with i = 1, and as soon as she looses a game she
continues the next game with the strategy si+1. Then two things can happen, either she discovered
the wining strategy, or she discovered a strategy that is winning on this infinite sequence of games.

Now restrict to strategies that are computable in polynomial time. This means that we consider
strategies for which there is a program P and a constant c, such that on a tableau containing the
top left cell (1, a) and bottom right cell (b, 1), the program P selects a cell from the tableau in time
O((a + b)c).

Suppose that there exists a polynomial time winning strategy, and that black plays it. The
stealing technique above makes sure that white can learn some polynomial strategy which permits
her to win always but a finite number of times. But the running time of her implemented strategy
might with a much larger exponent, than the one of black. This is not satisfactory. What can we
change to make sure that she learns a winning strategy of the same complexity order than black?

C. Dürr
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The length-bounded VPN design problem

Jannik Matuschke Britta Peis Felix Seibert

A virtual private network (VPN) is a connection of several private networks through
a public network by means of point-to-point connections. The VPN design problem
asks for a routing template within the public network such as to minimize the cost for
the capacities required to guarantee sufficient connectivity for any possible pattern of
communication between the private networks. Formally, we are given a graph G = (V,E)
with a set of terminals W ⊆ V and edge costs c ∈ RE . A routing template is a function P
that assigns a v-w-path Pvw to every unordered pair of vertices v, w ∈ W . A demand
pattern is a matching D in the complete graph on the vertices W . Let D be the set
of all demand patterns. The required capacity of edge e with respect to the routing
template P is ue(P ) := maxD∈D |{{v, w} ∈ D : e ∈ Pvw}|. Accordingly, the cost of the
routing template is c(P ) :=

∑
e∈E c(e)ue(P ). Goyal, Olver, and Shepherd [1] showed

that an optimal routing template can be found by computing a shortest path tree from
any terminal and choosing the one with minimal cost, proving what before has been
known as the VPN conjecture.

Length-bounded VPN design Virtual private networks are often used for real-time
applications such as video conferencing. In these applications the delay of a connection
must be below a certain threshold to ensure sufficient quality of service. Thus, a natural
extension of the VPN design problem requires the paths between the terminals to fulfill
a length restriction, i.e., we are given a length bound L ∈ R and edge lengths ` ∈ RE as
additional input and every path Pvw of the routing template has to fulfill

∑
e∈P `(e) ≤ L.

It is easy to see that in this case the set of feasible solutions might not contain a
tree. In fact, the length-bounded VPN design problem can be reduced to the set cover
problem and is hard to approximate by any factor better than logarithmic. We there-
fore consider (α, β)-approximations that relax the length bound by a factor of α while
approximating the cost of the optimal solution to the non-relaxed problem by a factor
of β. When relaxing the length bound by a factor of at least 2, we can achieve constant
factor approximations.

Theorem (MPS 2013). There is a (2, 2)-approximation algorithm and an (8, 1)-approxi-
mation algorithm for the length-bounded VPN design problem.

Question: Is there a (2, 1)-approximation algorithm for length-bounded VPN design
that returns a solution that is a tree?

References
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Journal of the ACM, 60(3):17, 2013.



CONVERGENCE OF INERTIAL GRADIENT FLOWS
IN CONVEX OPTIMIZATION PROBLEMS

RIDA LARAKI AND PANAYOTIS MERTIKOPOULOS

Abstract. �emethod of gradient descent dates back to the -th century principle of energyminimization – the well known
“heavy ball with friction” analogy. However, despite the ample physical intuition, if a convex optimization problem is treated
as a physical system with the problem’s objective playing the role of the system’s potential energy, it is not clear whether the
physical principle of energyminimization actually holds. Modulo somemild technical conditions, Alvarez () showed that
this is indeed the case if one applies Newton’s law of motion to a smooth convex objective de�ned over Rn ; however, whether
similar results extend to constrained convex optimization problems (and how) is a completely open question.

Statement of the Problem

Consider the “heavy ball with friction” incarnation of Newton’s second law in Rn :

ẍ = − gradV − ηẋ , (HBF)

where the “potential energy” V ∶Rn → R is a smooth convex function and η >  is a friction coe�cient which dampens
the system and controls the rate of energy dissipation. Physical intuition suggests that the trajectories of (HBF) will be
drawn to low-energy levels and, due to friction, will eventually converge to a minimizer of V . If argminV ≠ ∅, Alvarez
() showed that this “energy minimization” principle holds true: every solution trajectory of (HBF) converges to a
minimizer of V .
Consider now the constrained convex optimization problem:

maximize V(x),
subject to x ∈ C , (P)

where C ∈ Rn is a compact convex set with full-dimensional interior and su�ciently nice boundary. In this case, (HBF)
will hit the boundary bdC of C in �nite time, so there is no hope of convergence. On the other hand, to counter such
issues in a �rst order framework, Alvarez et al. () introduced the Hessian Riemannian gradient system

ẋ = − grad V (HR)

where (grad V) j = ∑k −jk
∂V
∂xk
denotes the Riemannian gradient of V w.r.t. a steepHessian Riemannian metric  on C –

i.e. a metric of the form  = Hess(h) for some strictly convex function h ∈ C∞(intC)with ∣dh(x)∣→ +∞ as x → bdC.
Again, under mild technical conditions, the trajectories of (HR) converge to the minimizers of V .

�e above suggests a very hopeful approach to salvage the convergence of (HBF) in constrained problems: simply
take the so-called covariant (i.e. invariant w.r.t. parallel translations) version of Newton’s law de�ned as:

Dx
Dt

= − grad V − ηẋ , (HBFC)

where Dxk
Dt denotes the covariant derivative operator which generalizes ordinary di�erentiation to a Riemannian setting

– more explicitly, D
xk
Dt = ẍk +∑i , j Γki j ẋ i ẋ j where Γki j are the Christo�el symbols of  (Lee, ). We are thus led to the

following open problem:

Open Problem (�e Principle of Energy Minimization). Is (HBFC) well-posed? Do the solution trajectories of (HBFC)
converge to a minimizer of (P) from all interior initial conditions?
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Rank Aggregation with Partitioning

Alantha Newman

October 13, 2013

Given ℓ permutations π1, π2, . . . πℓ, each on the integers 1 through n, the Rank Aggregation
problem is to find an output permutation π that minimizes the following quantity:

ℓ
∑

i=1

d(π, πi), (1)

where d(σ, ρ) is the distance between the two permutations σ and ρ. One commonly used distance
measure between permutations is known as the Kendall-Tau or Bubble-Sort distance and is simply
the number of inversions in one permutation when compared to the other. In other words, without
loss of generality, let us assume that σ is the identity permutation. Then the distance between
permutations σ and ρ is simply the number of pairs of integers in ρ that appear in the “wrong”
order, i.e. a appears before b, but a > b. Here, we will use d(., .) to denote this distance measure.

The problem of Rank Aggregation has been well studied and there is a PTAS [KMS07]. It is
known to be NP-hard when ℓ ≥ 4 [DKNS01]. There is also a simple 2-approximation: take the
best of the input permutations.

Sometimes, however, it may be the case that a single permutation can not really be used to
accurately describe the input permutations. For example, suppose half of the input permutations
are the identity permutation and half of the input permutations are the reverse of the indentity
permutation. Then it is easy to see that any permutation is a median, because for each pair
of elements, it does not matter in which order it appears in the output permutation. Moreover,
for any permutation π, the value of the total distance from π to all of the input permutations
is high—

(

n
2

)

( ℓ
2
)—which is intuitively why it does not give us much information about the input

permutations. In this case, it would be better to divide the permutations into two sets and give
two medians, in which case the value of an optimal solution would drop to zero. This leads us to
the following problem:

Rank Aggregation with k Partitions: Given ℓ input permutations on [n] and an integer k,
find a set of k permutations, Sk, that minimize:

ℓ
∑

i=1

k
∑

j=1

d(πi, Sk), (2)

where the distance d(πi, Sk) is defined as the distance between πi and the closest permutation in
Sk.
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This is actually the well-known k-median problem with the restriction that the input points
are permutations. It is a “continuous” version because the medians can be chosen from the entire
set of permutations and not just from the input permutations, as is the case in the “discrete”
version of the problem. An optimal solution to the discrete version of this problem yields a 2-
approximation to the continuous version. This is because a solution to the continuous problem
clusters the input permutations around the k medians. For each of these clusters, we can just pick
the best permutations from that cluster, which is 2-approximation to the objective value obtained
using the k optimal medians.

Thus, we can exhaustively consider the
(

n
k

)

possible sets of k medians. For each set, we assign
each input permutation to the closest permutation in the set. One of these sets results in a
partitioning whose value is no greater than the 2-approximation to the optimal solution. This
algorithm is not efficient for large values of k since it runs in time O(nk). (Note that we could
also use this approach to find the best partitioning with at most k medians in the same asymptotic
running time.) Thus, we have the following open problems:

Problem 1 Give a 2-approximation for the Rank Aggregation with k Partitions problem that has
a polynomial running time (independent of k).

Problem 2 Give an optimal algorithm for the discrete Rank Aggregation with k Partitions problem
that has a polynomial running time (independent of k).

Problem 3 Give any approximation for the Rank Aggregation with k Partitions problem that has
polynomial running time and has approximation guarantee better than 1+

√
3, which is the current

best for general k-median.

Note that a solution for Problem 2 yields a solution for Problem 1. However, it not clear how
the problems are related in the other direction.
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The connectivity problem in the
number-in-hand computation model
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Departamento de Ingenieŕıa Matemática, Universidad de Chile

Suppose that we have a network of n processors where each processor knows
its own ID and the IDs of its neighbors. Processors communicate in synchronous
rounds by writing messages on a whiteboard, which is visible to all of them. The
goal is to design a protocol at the end of which every processor knows whether
the network is connected. We assume the following:

– Each processor in the network has a different ID (a number between 1 and
n, where n is the number of processors in the network).

– The only information each processor has, besides n and its own ID, is the
list of IDs of its neighboring processors.

– Processors have unlimited computational power.
– When the protocol ends every processor should know whether the nework is

connected.

We are interested in two complexity measures:

1. Number of rounds (where in each round all processors write simultaneously
one message on the whiteboard).

2. Message size (number of bits of the longest message written during the pro-
cess on the whiteboard).

If there is no restriction in the message size then there is a trivial one-round
protocol that reconstructs any network. In fact, given an arbitrary network G
(simple undirected graph) and given an arbitrary assignment of IDs to the n
processors (nodes of G) the protocol is the following: every processor writes
on the whiteboard the 0 − 1 vector x ∈ {0, 1}n corresponding to the indicator
function of its neighborhood. With this information written on the whiteboard
every processor can reconstruct G.

We conjecture the following: there is no O(log n) message size protocol that
solves the connectivity problem in one round.



Lagrangian duality in Online Scheduling
Nguyen Kim Thang

The most powerful tool until now to design and analyze online algorithms is the potential
function methods. However, the construction of the algorithms is far from trivial and that
gives little insight about the nature of the problems and the algorithms. Recently, principled
methods based on non-linear mathematical programming have been introduced to study
online algorithms [1, 2, 3]. The idea of the approaches is the following.

Consider a mathematical programming relaxation (associated with a given problem)
which is not necessarily convex and its Lagrangian dual. Then construct dual variables
such that the Lagrangian dual has objective value within a desired factor of the primal one
(due to some algorithm). Then by the standard Lagrangian weak duality for mathemati-
cal programming, the competitive ratio follows. The main step is the construction of dual
variables (dual fitting or primal dual); and subsequently a competitive algorithm could be
derived from such dual variables.

With the unified approaches, algorithms have been designed simpler and have better
performance guarantee [3]. We are interested in studying the following problem.

Problem We have one machine and a energy budgetB. The consumed energy is
∫∞
0
P (s(t))

given s(t) the speed of machine at time t and P is a convex function; a standard energy
power function P (s) = sα where α is a constant. Jobs arrive over time, job j have value vj,
processing time pj, release date and deadline are rj and dj, respectively. The objective is to
maximize the total value of jobs completed on time without violating the energy budget.

Question Does there exist a (1+ε)-resource augmentation, O(1/εk)-competitive algorithm
for the problem where k is some constant?

We say that an algorithm is α-resource augmentation, r-competitive if the total value of
the algorithm (with the energy power function P (s)/α) is at least factor r from the total
value of the optimal algorithm (with the energy power function P (s)).
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Consistency of decisions at different time horizons

Jorge R. Vera

October, 2013

Consider the following situation: We have to make decisions (for instance, production decisions
in a company) which cover, say, a year divided in months. There are costs associated to those
decisions as well as various kind of constraints. This will be the typical case of a production plan-
ning problem where we have to decide on monthly production quantities as well as on production
resources. Now, consider the analogous short-term operational planning problem: suppose we are
at the beginning of the first month and we have to decide on weekly (or even daily) production
quantities, using available resources, some of which have been already “fixed” in the planning
step. This situation is common in practice and, due to uncertainties and different degrees of model
aggregation, most of the time inconsistencies appear which could lead to excessive cost or even
indefeasibilities.

The problem is how to make good tactical decisions, taking into account the effect in the short
term problem.

This can be represented as one problem at the tactical level, of the form TP ) : min{cTx :
Ax = b, x ≥ 0}, where x is a vector of monthly variables, and a problem for, say, the first period:
OP ) : q(x, ξ) = min{dT y : Tx+Wy = h, y ≥ 0} where ξ = (d, T,W, h) is the data vector which is
random in some of its components and can be used to represent the fact that the actual situation
in the short term will be different from the one assumed in the tactical horizon.

Questions:

1. How can we make decisions in TP ) in such a way that there is a high probability that OP)
is feasible?

2. How can we make decisions in TP ) in such a way that OP ) does not deviate excessively (to
be defined) from the optimal consistent situation (say, when there is no uncertainty).

3. One way to model the interaction is as a Two Stage Stochastic problem of the form

min cTx+Q(x)
s.a. Ax = b, x ≥ 0

where Q(x) = E(q(x, ξ)). In this case, we want to consider some recent algorithmic alter-
natives which have emerged from recent work in First Order Methods. For instance, the
Stochastic Subgradient Method can be applied in an accelerated way to this problem, and
recent developments by G. Lan suggest that a randomized version of Conditional Gradient
could be competitive for solving this problem.

4. In any of the above cases, we want to have estimates of the probability of consistency.
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